Conservatory Roof Assembly Guide

Effective from April 2010
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Before you start</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Box gutter</td>
<td>2.1 Fixing & sealing the box gutter</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2.2 Joining the box gutter</td>
<td>5</td>
</tr>
<tr>
<td>3. Eaves beam</td>
<td>3.1 Fixing the eaves beams</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3.2 Fixing the gable support platform</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3.3 Joining the eaves beam</td>
<td>7</td>
</tr>
<tr>
<td>4. Rafters</td>
<td>4.1 Ridge & radius end rafters</td>
<td>8-9</td>
</tr>
<tr>
<td></td>
<td>4.2 Jack Rafter connection</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4.3 Gable end rafter</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4.4 Standard valley rafter</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4.5 Drop valley rafter</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4.6 In-line valley on gable support</td>
<td>12</td>
</tr>
<tr>
<td>5. Ridge</td>
<td>5.1 Joining ridges</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5.2 Lean to wallplate</td>
<td>13</td>
</tr>
<tr>
<td>6. Tie bar</td>
<td>6.1 3 & 5 way tie bars</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>6.2 In-line tie bar</td>
<td>15</td>
</tr>
<tr>
<td>7. Glazing</td>
<td>7.1 Fitting the roof sheets</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>7.2 Glazing the valley</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>7.3 Glass roofs</td>
<td>17</td>
</tr>
<tr>
<td>8. Sealing</td>
<td>8.1 Fitting the foam bung</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>8.2 Ridge corner joint</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>8.3 Ridge ‘T’ joint</td>
<td>19</td>
</tr>
<tr>
<td>9. Ridge top caps</td>
<td>9.1 Ridge & wallplate top cap</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>9.2 Ridge flashing trim</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>9.3 Radius end top cap</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>9.4 Gable end top cap</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>9.5 Ridge top cap joints</td>
<td>22</td>
</tr>
<tr>
<td>10. Guttering</td>
<td>10.1 Guttering</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>10.2 Gutter union to box gutter</td>
<td>24</td>
</tr>
<tr>
<td>11. Internal cladding</td>
<td>11.1 Internal eaves beam cladding</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>11.2 Internal ridge cladding</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>11.3 Internal valley cladding</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>11.4 Box gutter cladding</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>11.5 Internal wallplate cladding</td>
<td>26</td>
</tr>
<tr>
<td>12. Bolstered Rafters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Useful information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The purpose of this Installation Guide is to assist the Installation Team when erecting a Synseal Roof. All Synseal roofs are individually designed to suit the size and specification requested.

The Synseal Roof will arrive in kit form consisting of a number of packages containing the aluminium skeleton and the PVC-U cappings. Small ancillary items should arrive in a box, in this box you should find a copy of the roof layout plan and this guide.

ROOF LAYOUT PLAN
The roof layout plan is essential as it depicts the size of the roof and the position of the main roof components. Thoroughly check that the roof fits the window frame layout and that all the roof components are present.

Each length of material should be numbered to correspond with its position on the roof plan. An example of this is an eaves beam assembly numbered P17 on the roof plan, the aluminium, gutter and cladding lengths should all be numbered P17 to aid identification.

CARE OF PRODUCTS ON SITE
Although the Synseal roof is robust in construction, simple measures should be taken when handling, storing and erecting the conservatory roof.

When unwrapping the packages take care not to damage components with a knife.

Do not leave PVC-U components outside in freezing conditions then immediately attempt to knock them on.

Do not leave brown components in their packaging whilst in direct sunlight at times of high temperatures.

Store polycarbonate roof panels in a dry safe area until they are required.

SEALING
The Synseal roof requires sealing at important junctions in the roof, the use of Low Modulus, Neutral Cure sealants is vital. Self cleaning glass may have compatibility issues with certain types of silicone based sealants, refer to your glass supplier regarding the use of specific sealants.

TOOLS REQUIRED
The following tools are necessary to install the Synseal Roof:

- 13mm socket and ratchet
- 17mm open ended spanners
- Power Drill + HSS and Masonry bits
- Long nosed pliers
- White rubber headed mallet
- Stanley Knife
- Tape Measure
- 45mm dia. hole cutter
- Silicone Gun
- Spirit Level
- Hack Saw
- Hot air gun
- 13mm open ended spanner
- Roofing square
- Cordless Driver + Pozi bits
- 60mm dia. hole cutter
- Nylon Roller

This Synseal Assembly Guide has been produced as an aid to assemble the Synseal range of products. All information in this manual is provided for guidance only. Synseal Extrusions Ltd cannot be held responsible for the way in which the information in this manual is interpreted. We reserve the right to alter specifications and descriptions without prior notice as part of our policy of continual development. All dimensions are in millimetres. Do not scale drawings.
The box gutter requires an adaptor to connect it into the perimeter plastic gutter. Apply 2 beads of silicone to this joint and slide in the adaptor. It is advisable to seal closed the voids in the end of the box gutter prior to fitting the adaptor.

The example above shows 2 special pieces of box gutter fabrication, the raised leg and zero return. The small return on the box gutter requires a welded upstand to accept the box gutter adaptor. The adaptor will need to be modified on site (as shown) prior to fixing.

The box gutter must be fitted level and supported at both ends. Longer box gutters require intermediate support as per the recommendations in the Structural Information guide.

The specialised fitting tape should only be applied when the aluminium is clean, dry and free of grease. Warm the tape with a heat gun and fit it centrally over the joint.

Whilst the joint is warm, use a small nylon roller to give an even compressed seal. Do not leave any air pockets or open edges on the tape.

The raised leg section of the box gutter is welded into the head of the main gutter. Silicone seal this continuous joint or preferably flash over the joint to create a watertight seal.

The box gutter has an optional fixing plate. This fixing plate is fastened back to existing and then the box gutter is swung into it. Ensure that the fixing plate is level and straight before attempting to rotate the box gutter into position.

The box gutter can be fastened back without the fixing plate. This raised leg example shows the fastener being secured with a long reach screwdriver through a site drilled access hole on the box gutter inner wall.

Consider the box gutter to eaves beam joint before fixing the box gutter to the building. The mitred joint must be tight and secured with the bracket as shown above.

The aluminium box gutter is designed to carry water to the perimeter plastic guttering. It is also designed to act as a beam carrying the weight of the rafters and glazing. The box gutter must be supported at both ends and at recommended centres.

The point of the eaves beam requires cutting off to allow the box gutter adaptor to slide in.

The position of the adaptor is dependent on the type of gutter union connecting to it. The screw lug requires removing as per the example in Section 10.2.

The raised leg box gutter detail

XBGF	Box gutter fixing plate
XBG6	Box gutter
XBGF	Insulation foam
XBGF	Glazing support section
XBG1	Box gutter bottom clad
XPS1	Box gutter bracket (secured to undersides of box gutter with 4No. 25mm screws)
Slide the aluminium joiner half way into the body of one box gutter.

The plastic box gutter joiner can be found in the component box. File down the mould spur off the underside.

Clip the joiner into the back groove on the box gutter and rotate the joiner into position allowing it to clip into the front groove. Remove any excess silicone from each side of the joiner.

Turn the box gutter over and secure it with 6 No. XM48-13 self drilling screws equally spaced along the joiner.

One edge of the joiner will require trimming down to allow it to clip into the groove on each side of the box gutter.

Run lines of sealant each side of the butt joint directly under where the joiner will be fitted.

Use the flashing tape provided to seal the plastic to aluminium joint. The box gutter must be clean and dry and ideally warm to assist the adhesion. Press the flashing tape firmly into place removing any air bubbles.

Repeat the process for the other edge on the joint.

Slide the adjacent box gutter onto the joiner to create the butt joint. Secure the second box gutter to the joiner as before.

Run lines of sealant each side of the butt joint directly under where the joiner will be fitted.

It is vital that this in-line mechanical box gutter joint is directly supported using a box gutter bracket or similar intermediate support.
3.1 Fixing the eaves beam

Before the roof installation commences make sure the conservatory footprint dimensions are correct, with the frames level and plumb. The internal sizes at the head of the frames should correspond with those on the supplied roof plan.

We recommend that silicone is used to form a seal between the head of the frame and the bottom of the eaves beam. **Note:** Do not seal the front of the eaves beam as this will restrict the fitting of the gutter under trim.

Position each eaves beam in turn onto the frame head ensuring the turnbuckles are in the open position. The internal eaves beam leg fits over the inside frame edge. The bottom of the eaves beam must fit down tight to the head of the frame the use of clamps is recommended to achieve this. In the event that a turnbuckle falls over a frame joint or connector the turnbuckle can be removed and a screw fixing used to secure this section of beam to the frame.

Note: It is recommended that when frame connectors are used then they should be cut 3mm shorter than the frame height to allow for the legs on the bottom of the eaves beam.

Once you are happy with the eaves beam setting out, engage each turnbuckle making sure of a positive connection with the frame.

Position the external stainless steel eaves beam connecting bracket centrally between the two extrusion lines on the outside of the eaves beam.

Fix the bracket to the eaves beams using the supplied self drilling screws (XM48-13).

When the eaves beams join to an internal corner a larger connecting bracket is supplied. In this picture a glazing packer has been temporarily used to form a gap between the bracket and cladding barb to allow space for the later fitting of the internal eaves clads.

This bracket is fixed using the supplied self drilling screws (XM48-13).

3.2 Fixing the gable support platform

When a gable support system is used, the eaves beam includes a separate aluminium extrusion that forms the gable platform. Occasionally this section will require fitting into the eaves beam onsite.

Slide the gable platform into the eaves beam parabolic head. Centralize the platform with the eaves beam (or gable frame when used in a gable fronted lean-to).

Secure the gable platform into the eaves beam with a 25mm self drilling screw (not supplied).
3.3 Joining the eaves beam

Find and mark the centre of the eaves beam joiner, slide the joiner in to the eaves beam cavity upto the centre mark.

Fix the joiner to the eaves beam using the supplied 13mm self drilling screws (XM48-13).

Slide the next section of eaves beam over the joiner until it meets the end of the first section of eaves beam. Fix in place using the 13mm self drilling screws (XM48-13).

Eaves beam to box gutter

Find and mark the centre of the box gutter to eaves beam joiner. Fit the joiner centrally between the box gutter cladding barbs and fix using the supplied 13mm self drilling screws.

Slide the eaves beam onto the joiner until it meets the end of the box gutter. Fix in place using the 13mm self drilling screws (XM48-13).

Global
Eaves beam

Global eaves beam screw fixed at 450mm max centres and max 150mm in from each end

Shield
Eaves beam

Shield eaves beam turnbuckle fixed at 500mm max centres and max 150mm in from each end
Before the installation of the rafters it is necessary to install the glazing support adapters. These are designed to fill in the gap left between the shaped rafter bottom cap and the polycarbonate support trim.

Ensure the ridge or wallplate is level and in its correct position prior to securing the rafter bolt with a M8 flanged nut. These need to be securely tightened with a 13mm socket or spanner.

Note: If the fitting of the rafter is restricted where it fits under the canopy of the ridge or wallplate then loosen both security bolts (when fitted) slide back the aluminium rafter to release the bolt. Locate the bolt through the bottom cap and fixing hole, then slide the aluminum rafter back over the bolt into its finished position.

The rafters against the house wall should be secured back using suitable masonry fixings at 600mm maximum centres and a maximum of 150mm in from either end of the rafter. **Note:** drill hole below the soaker level.

Some of the rafters, which fit onto the standard multi-holed radius ends will have a pre-fitted plastic bar end cap and bolt. Make sure the shoulder of this cap fits over the rafter bottom cap before installation.

Standard Radius End: When a standard radius is used then the table to the side is used to establish the rafter positions. It is important that each rafter is positioned correctly or problems will arise with the installation of the remaining roof skeleton and glazing.

These come in two sizes, the larger for Georgian hips and the smaller for Victorian, jacks and transom rafters.

Note: To establish the correct position of a ridge on a gable designed roof place the holes which are drilled at 28mm from the end of the ridge against the house wall. This will leave the holes drilled at 38mm at the front.

Determine the height and position of the ridge and support it in this position. Next locate the main ridge to eaves rafters using the roof plan as a guide to their positions. Each rafter connects into a pre-drilled hole via a single bolt to the top and bottom.

Note: If a security bolt is fitted it is important that this is checked for tightness on site. If it is found to be loose then it must be fully tightened using a 4mm allen key.

The rafters against the house wall should be secured back using suitable masonry fixings at 600mm maximum centres and a maximum of 150mm in from either end of the rafter. **Note:** drill hole below the soaker level.

Some of the rafters, which fit onto the standard multi-holed radius ends will have a pre-fitted plastic bar end cap and bolt. Make sure the shoulder of this cap fits over the rafter bottom cap before installation.

Standard Radius End: When a standard radius is used then the table to the side is used to establish the rafter positions. It is important that each rafter is positioned correctly or problems will arise with the installation of the remaining roof skeleton and glazing.

These come in two sizes, the larger for Georgian hips and the smaller for Victorian, jacks and transom rafters.

Note: To establish the correct position of a ridge on a gable designed roof place the holes which are drilled at 28mm from the end of the ridge against the house wall. This will leave the holes drilled at 38mm at the front.

Determine the height and position of the ridge and support it in this position. Next locate the main ridge to eaves rafters using the roof plan as a guide to their positions. Each rafter connects into a pre-drilled hole via a single bolt to the top and bottom.

Note: If a security bolt is fitted it is important that this is checked for tightness on site. If it is found to be loose then it must be fully tightened using a 4mm allen key.

Some of the rafters, which fit onto the standard multi-holed radius ends will have a pre-fitted plastic bar end cap and bolt. Make sure the shoulder of this cap fits over the rafter bottom cap before installation.

Standard Radius End: When a standard radius is used then the table to the side is used to establish the rafter positions. It is important that each rafter is positioned correctly or problems will arise with the installation of the remaining roof skeleton and glazing.

These come in two sizes, the larger for Georgian hips and the smaller for Victorian, jacks and transom rafters.

Note: To establish the correct position of a ridge on a gable designed roof place the holes which are drilled at 28mm from the end of the ridge against the house wall. This will leave the holes drilled at 38mm at the front.

Determine the height and position of the ridge and support it in this position. Next locate the main ridge to eaves rafters using the roof plan as a guide to their positions. Each rafter connects into a pre-drilled hole via a single bolt to the top and bottom.

Note: If a security bolt is fitted it is important that this is checked for tightness on site. If it is found to be loose then it must be fully tightened using a 4mm allen key.

Some of the rafters, which fit onto the standard multi-holed radius ends will have a pre-fitted plastic bar end cap and bolt. Make sure the shoulder of this cap fits over the rafter bottom cap before installation.

Standard Radius End: When a standard radius is used then the table to the side is used to establish the rafter positions. It is important that each rafter is positioned correctly or problems will arise with the installation of the remaining roof skeleton and glazing.

These come in two sizes, the larger for Georgian hips and the smaller for Victorian, jacks and transom rafters.

Note: To establish the correct position of a ridge on a gable designed roof place the holes which are drilled at 28mm from the end of the ridge against the house wall. This will leave the holes drilled at 38mm at the front.

Determine the height and position of the ridge and support it in this position. Next locate the main ridge to eaves rafters using the roof plan as a guide to their positions. Each rafter connects into a pre-drilled hole via a single bolt to the top and bottom.

Note: If a security bolt is fitted it is important that this is checked for tightness on site. If it is found to be loose then it must be fully tightened using a 4mm allen key.

Some of the rafters, which fit onto the standard multi-holed radius ends will have a pre-fitted plastic bar end cap and bolt. Make sure the shoulder of this cap fits over the rafter bottom cap before installation.
On Georgian designed roofs the access to the bottom fixing nut of the Georgian hip can be restricted by the shape of the eaves beams. To help gain access for a 13mm socket lift up the back of the hip rafter as shown in the picture above.

The non standard radius end (XRE4) will have been pre-drilled in the factory with one hole per rafter. This will also have a pre-fitted clip and bolt to attach the radius end bottom cap.

Some of the rafters will be pre-fitted with an aluminium packer. This has been designed to fit between the rafter and radius end as shown. The rafter is then fixed with a flanged nut on the underside of the radius end.

The purpose of this packer is to raise the height of the rafters so that all of the bottom cap glazing gaskets are at the same level.

Jack rafters connect onto the hip via a hook fitted to the jack and a spring fitted to the hip. Raise the bottom of the jack rafter and clip the jack hook over the gasket section on the hip rafter. Once the jack is located position the jack rafter bolt into the pre-drilled hole in the eaves beam or valley wing (do not tighten the nut at this time).

Using pliers pull the loop of the spring over the side lug on the jack spring (do not fit the spring under the main hook).

Note: Check that the hook on the jack rafter does not clash with the hip rafter bolt channel as this could leave a gap between the jack and hip bottom caps.

Pull up the jack rafter bottom cap so that the milled section fits up to the hip rafter bottom cap. If a slight gap is left this can be helped by elongating the bolt hole in the jack rafter bottom cap. Once this joint has been achieved, fit and tighten the fixing nut.

Note: These joints may re-open slightly during glazing. Use a rubber or nylon mallet to tap the jacks back into position.
Slide the gable fixing plate (XGFP1) into the bolt slot of the side eaves beams and fix in place with two 10mm screws (XM48-10). Position the plate so that the centre of the 10mm hole is 31mm away from the bolt slot centre line of the front eaves beam.

Position the end rafter with the top bolt in the pre-drilled hole in the ridge and the bottom bolt through the gable fixing plate. Fasten the rafter by screwing through the outside of the rafter into the gable frame.

Glaze the roof as described in the glazing section. The end rafter side cap is fitted over the rafter top cap and clipped on to the end rafter as shown above.

It is important to seal the joint between the two rain excluders. **Note:** It is advisable to erect as much of the roof as possible prior to installing the valley rafter. Check to make sure the ridge, wallplate and eaves beams are level and square and match the dimensions on the supplied roof plan.

Seal the three valley rafters components back to the ridge, wallplate and rain excluders.

A roof with a valley will have been pre-built in the factory. The 3 aluminium components of the valley will arrive arrow-headed at the top and bird-mouthed at the bottom. The valley wings will have been pre-drilled in the factory for the connection of the valley and for the connection of the valley jack rafters.

Position the valley rafter so that the holes at the top and bottom of the valley wings match through with those in the ridge, wall plate and eaves beams. The valley rafter can now be bolted in place.

Finally install the glazing support trim (XPS1), which will be pre-notched to fit over the valley wing and connecting bolt.
Establish the position of the wallplate and fasten back to the house wall making sure the wallplate is level. The wallplate should be fixed back at every rafter position (see drawing in Section 9.1).

Seal the valley body and wing to the wallplate and rain excluder.

Seal along the top and the end of the wallplate and along the top of the soaker rafter.

Place and position the valley so that the pre-drilled holes in the valley line through with those in the eaves beams and wallplate.

Seal the valley wing to the house wall.

Seal the valley wing to the wallplate.

Install the end rafter to the valley wing and ridge and securely fasten back to the house wall.

Note: Occasionally, depending on the roof design, the central valley body may also fit up to the house wall.

Glaze the valley as described in the glazing section. Fit the wall rafter top cap and seal the end to the wallplate.

Fit the wallplate top cap this will run over the wall rafter top cap.

Scribe and cut the valley top cap around the wallplate top cap. This should be cloaked in lead during the flashing stage.

Finished picture showing a correctly cladded drop valley.
4.6 In-line valley on gable support

Position and fix the gable support platform as shown in the eaves beam section. Fit the external eaves clad (XEBC5) on to the gable platform.

Place the gable frame on to the gable platform. Once it has been correctly positioned so that it is in-line with the frames below, hold it in place by fixing down through the frame into the platform.

Note: The gable platform has been designed for use with Synseal products. Occasionally when used with an alternative profile the inner legs may require removing to allow for the correct positioning of the gable frame.

The gable infill wedges have been designed for roof pitches from 25° to 35°. If the roof pitch is greater than 25° then the wedges will need to be cut to suit the new roof pitch. Lines have been included inside each section of the infill wedge to assist with this process. Glue the two sections together and insert the insulating wedge before installation.

Once the wedges have been installed they should match the line of the gable frame.

Note: Gable frames must be face drained.

Install the top of the valley as previously described in the rafters valley section.

The bottom of the valley is positioned so that the pre-drilled hole in the valley wing lines through with the pre-drilled hole in the eaves beam. Once the valley wing has been fastened install the glazing support trim (XPS1).

Check that the cladding barbs on the bottom of the valley wing do not sit over the infill wedge as this will wrongly position the height of the valley wing. These can be easily cut back with a grinder or hacksaw so that they finish just inside the frame line.

Mark and cut the rafter to frame coupler (PC01) so that it fits up to the valley wing.

The rafters can now be installed on to the valley.

Note: The bolts in the end rafters are only used for rafter location. The rafter is secured by fastening through the outside of the rafter with screws in to the gable frame at 300mm centres.
Slide the aluminium joiner half way into the body of one ridge. Secure the joiner with 4 No. XM48-13 screws each side of the ridge. Clip in and secure the lower ridge joiner with 4 No. XM48-13 each side.

Slide the other ridge body onto the joiners and repeat the fixings procedure.

The view of the lower ridge joiner connected via 8 No. XM48-13 screws.

5.2 Lean to wallplate

Option 1
The wallplate sits on a corner post fitted between the house wall and gable window frame. The wallplate should be fixed back to the house wall at every rafter position using suitable masonry fixings.

Option 2
The wallplate is notched to fit around the gable window frame. This frame is fixed directly back to the house wall. When a gable frame is used, the end rafter top and bottom bolts become redundant. Screw fix the end rafter to the head of the gable window as shown at 300mm centres.
Place the tie-bar bracket on to the factory fitted bolts and fasten using the supplied 13mm nuts.

Note: If the bracket is a tight fit over the bolts, loosen the security bolts with a 4mm allen key fit the bracket and re-tighten the bolts.

Centralise the ridge tie-bar bracket with the tied rafters making sure it runs in-line with the ridge. Drill four 5mm pilot holes and fix using the four supplied screws within the tie-bar kit. Cover the screws heads with the push on screw covers.

Tighten the three nuts in the central boss with a 17mm spanner until the window frames are plumb and the internal roof dimensions are correct. Make sure the rods are plumb and level.

Clip the ridge under channel (XR3) in to the bottom of the ridge so that it is in-line with the tied rafters and fix using 13mm self-drilling screws (XM48-13).

Fasten the clevis to the bracket using a bolt and 17mm nut. On a three-way tie-bar three clevises will be required, one for each rafter and one for the ridge.

Determine and cut the 3 lengths of threaded rod and rod covers. Screw one end of each rod at least 20mm into each clevis. Slide on the rod covers then push the remaining ends into the central boss.

Use the supplied double sided tape to fit the central boss covers to both sides.

Cover all of the exposed nut and bolt heads with the supplied push on cover caps.

To establish the length of the rod covers, assemble the tie bar with just the threaded rods then measure for the covers. The tie bar will then require re-assembly.

5-way tie bars

These are generally supplied on hip-back ‘p’ shape designs as part of a designed tie bar system. Depending on the layout of the roof, this system can incorporate other 3 or 5 way tie bars as the drawing (right) illustrates.
This option of tie-bar is used when the centre of the tied rafters run in-line with the end of the ridge.

In this situation the tied rafters will be fitted on to the radius end, which will be the XRE4 non-standard radius end.

Remove the bottom two machine screws, which hold the radius connector (XRE1) to the ridge. Place the tie-bar bracket (XTBRC1) over the removed screw holes and fix using the removed machine screws.

Note: The radius end (XRE4) has been removed for photographic purpose only.

Fit the radius end bottom cap (XREC2) this will be pre-drilled with a 10mm hole. Pass the drop rod through the bottom cap and bracket and fit the 17mm nut to the end of the rod.

Fit the bracket and clevis to the two rafters as described in the standard tie-bar section. Determine and cut the threaded rods and rod covers and screw the rod ends in to the clevises.

Place the rods in to the central boss, making sure they are level. Measure and cut the drop rod making sure it passes through the top bracket.

Fit the rod covers and tighten the nuts within the centre boss until the frames are plumb.

Cover all of the exposed bolt heads and nuts with the supplied cover caps.

Fit the two central boss covers using the supplied double sided tape.

Fit bar in line with end of ridge option
XTBRC1 bracket
7.1 Fitting the roof sheets

Careful consideration must be given to the sequence of glazing a conservatory roof. Please consider the following points:

- Sequence the glazing so access is available for sealing the critical ridge areas
- With glass roofs, sequence the glazing so loadings are progressively balanced across the ridge
- Allow access to box gutters for fixing of rafter end caps

Cut the sheet closer to the bottom width of the panel and remove the drip 20mm in from each end. Slide the closer onto the end of the panel. Push the sealant nozzle under the lip of the closer and run a continuous line to form a seal onto the roof sheet.

Seal the bottom lip of the closer to the sheet and then seal up the open ends. Clean away any excess sealant.

Ensure the closer is sealed to the panel and not the breather tape!

Offer the roof panels into position so they are central between the rafters. See the notes above for positioning panels.

With the panel in its final position, remove the film from the security tape on the support trim and press the panel down. If the roof is 10° pitch or lower then run a sealant line between the underside of the roof sheet and the support trim.

With a roof panel in each side of the rafter, knock the rafter top cap down onto the rafter using a rubber headed mallet. Use a piece of timber when knocking on the foiled aluminium top caps to avoid denting the caps.

Seal the rafter top cap to ridge rain excluder joint.

Seal the jack to hip rafter top cap joint.

Jack rafter top caps are supplied over size and will require cutting down on site. Foiled aluminium top caps are supplied with the gasket over-length.
7.2 Glazing the valley

Roof panels at the top of the valley may require the jack rafter to be released to allow the panel to be positioned. This is best done without the panel having the end closer fitted.

Remove the film off the security tape and press the panel down once in position. Re-connect the jack rafter and then slide the end closer up onto the roof panel as shown.

Push the sealant nozzle under the top lip of the end closer and run a continuous line of sealant to form a gasket.

7.3 Glass roofs

Larger roofs may come supplied with muntin strip to join units together. Assemble the two units and the muntin strip dry within the roof.

Secure each glass retainer with the 2 screws provided. Transom rafter glass retainers should finish flush with the end of the rafter as shown. Note: XGS6 packer within sheet closer.

Please note that the hip rafter glass retainer when pushed up to the roof glass will be fixed shy of the rafter end.

Wedge packers should be used to pack the glass between the rafters, 2 packers per corner are supplied.

Assemble the muntin strip and glass units dry.

Force the nozzle of the sealant gun under the gasket edge of the muntin and run a continuous line of sealant to form a gasket.

Repeat this for the other three edges and remove any excess silicone.

Glass roofs are supplied with glass kits as shown above. Position the glass and push the glass retainer up to the sheet closer and screw it into position using the XM425 screws provided. Wedge the glass against the retainer using the wedges when provided.

Secure each glass retainer with 2 No. XM425 screws.

Notes:
- Long span rafters use thinner glass retainers and NO wedges.
- Glass roofs are supplied with glass kits as shown above. Position the glass and push the glass retainer up to the sheet closer and screw it into position using the XM425 screws provided. Wedge the glass against the retainer using the wedges when provided.

Assembly Guide

8.1 Fitting the foam bung

Fully glaze and cap all of the rafters, which fall onto the radius end.

Insert the cut down section of bung making sure it is pushed firmly in to the silicone seal.

Adjust the size of the v-notches depending on the size of the aperture.

Finally run a continuous seal around the foam bung so it is sealed to the glazing and rafter top caps.

Using a hacksaw blade cut down the width and height of the bridged section of foam bung so that it fits snugly between the rafter top caps and finishes level with the top of the ridge.

Test fit the half round foam bung making sure the chamfer runs downwards.

Push the bung in to the aperture so it finishes just above the rafter top caps.

Silicone seal the joint between the two foam bungs including the joints between the two v-notches.

Remove the bung and silicone seal around the ridge profile making sure the silicone runs down to the glazing level on both sides.

If the bung is too large for the aperture, cut two v-notches in to the bung using a hacksaw blade.
Some corner ridges will have a radius end detail. Cut the foam bung components down to fill the void.

Completely seal the rafter top caps and roof sheets to the face of the foam bung. Seal the foam bung to the end profiles of the ridge.

Fit the ridge top caps to the ridge body as per the photo above. Note the removal of the cresting upstands.

Position the ridge top cap corner cover XPT90 and drill 2 No. 5mm holes per side (8 total).

Apply silicone sealant to the ridge top in the area below the XPT90.

Fix the XPT90 into position using the 8 plastic rivets (XRREC3) provided. Clean up and remove any excess silicone.

Fit the 3 separate ridge top caps leaving a tight mitred joint. Remove protective tape and apply lines of sealant as shown in red above. Note that the cresting track has been removed.

Position the 2 covers onto the joint over the lines of sealant. Compress the joint and rivet the covers to the ridge top caps in the 6 positions shown. Use the plastic rivets provided through 5mm diameter holes.

Seal and rivet the rear joint cover to the previous covers completing the joint. Remove excess sealant ensuring the edges of all joint lines are sealed.

The run of crestings can now be slid along the ridge top cap over the joint. The bottom legs on the cresting should have been removed to allow this.

The adjacent line of cresting can now be slid into place over the joint.

The completed assembly.
Centralise the two clips on the ridge top cap with the two barbs on the main ridge.

Starting at one end knock the top cap in to position using a rubber mallet.

The top cap is in its correct position when the wings of the top cap touch the wings of the main ridge.

Refer to Section 9.2 for fitting the aluminium ridge top cap

Make sure the correct position is struck when fitting the top caps. In colder weather conditions a block of timber can be used to spread the impact over the PVC-U top cap.

The PVC-U wallplate top cap is exactly half of a ridge top cap and is fastened in the same manner.

The painted aluminium wallplate top caps do not clip onto the wallplate but are held in place with plugs and screws.

An extrusion line has been incorporated along the back upstand of the aluminium wallplate top cap for the positioning of the fixing screws.

Picture showing the positions of the wallplate fastening and the top cap fixing screw.

Bay and hip-ended lean to roofs require a radius end top cap. This should be sealed and secured to the wallplate top cap with the plastic rivets supplied.

There is now NO top cap and wallplate require flashing over to cover aluminium.

Revised Lean to Wallplate Design for 5 and 10 degree roofs

Note: this wallplate will always be notched to sit around the gable window frame as shown in Option 2 - Page 11.
The painted aluminium ridge top caps are attached to the ridge using clips (XR4), which are pre-fitted to the main ridge during manufacture.

Run two continuous beads of sealant over the ridge top cap were the cresting barbs were removed.

The radius or gable end of the ridge top cap will have been notched during manufacture. Cut off the cresting barbs so that they finish level with the notch depth. File this area flat.

The radius or gable end of the ridge top cap will have been notched during manufacture. Cut off the cresting barbs so that they finish level with the notch depth. File this area flat.

Run two continuous beads of sealant over the ridge top cap were the cresting barbs were removed.

First prepare the ridge for the fitting of the ridge flashing trim (XFT). Place the flashing trim over the wall end of the ridge top cap and mark where its front edge finishes.

Fit the flashing trim and fasten using the supplied push fit rivets through a 5mm drilled hole.

Slide the ridge top cap onto the ridge.

Using a hacksaw cut back the cresting upstands up to the mark line making sure they are cut level with the surface of the top cap.

Run two continuous beads of sealant over the ridge top cap were the cresting barbs were removed.

The radius or gable end of the ridge top cap will have been notched during manufacture. Cut off the cresting barbs so that they finish level with the notch depth. File this area flat.

Run two continuous beads of sealant over the ridge top cap were the cresting barbs were removed.

First prepare the ridge for the fitting of the ridge flashing trim (XFT). Place the flashing trim over the wall end of the ridge top cap and mark where its front edge finishes.

Fit the flashing trim and fasten using the supplied push fit rivets through a 5mm drilled hole.

Slide the ridge top cap onto the ridge.

Using a hacksaw cut back the cresting upstands up to the mark line making sure they are cut level with the surface of the top cap.

Note: Slide the ridge top cap onto the ridge before the fitting of the hip rafter top caps. Always check the roof design to make sure the top cap can be fitted without restriction.

The radius or gable end of the ridge top cap will have been notched during manufacture. Cut off the cresting barbs so that they finish level with the notch depth. File this area flat.

Run two continuous beads of sealant over the ridge top cap were the cresting barbs were removed.

First prepare the ridge for the fitting of the ridge flashing trim (XFT). Place the flashing trim over the wall end of the ridge top cap and mark where its front edge finishes.

Fit the flashing trim and fasten using the supplied push fit rivets through a 5mm drilled hole.

Slide the ridge top cap onto the ridge.

Using a hacksaw cut back the cresting upstands up to the mark line making sure they are cut level with the surface of the top cap.

Note: Slide the ridge top cap onto the ridge before the fitting of the hip rafter top caps. Always check the roof design to make sure the top cap can be fitted without restriction.

The radius or gable end of the ridge top cap will have been notched during manufacture. Cut off the cresting barbs so that they finish level with the notch depth. File this area flat.

Run two continuous beads of sealant over the ridge top cap were the cresting barbs were removed.

First prepare the ridge for the fitting of the ridge flashing trim (XFT). Place the flashing trim over the wall end of the ridge top cap and mark where its front edge finishes.

Fit the flashing trim and fasten using the supplied push fit rivets through a 5mm drilled hole.

Slide the ridge top cap onto the ridge.

Using a hacksaw cut back the cresting upstands up to the mark line making sure they are cut level with the surface of the top cap.

Note: Slide the ridge top cap onto the ridge before the fitting of the hip rafter top caps. Always check the roof design to make sure the top cap can be fitted without restriction.

The radius or gable end of the ridge top cap will have been notched during manufacture. Cut off the cresting barbs so that they finish level with the notch depth. File this area flat.

Run two continuous beads of sealant over the ridge top cap were the cresting barbs were removed.

First prepare the ridge for the fitting of the ridge flashing trim (XFT). Place the flashing trim over the wall end of the ridge top cap and mark where its front edge finishes.

Fit the flashing trim and fasten using the supplied push fit rivets through a 5mm drilled hole.

Slide the ridge top cap onto the ridge.

Using a hacksaw cut back the cresting upstands up to the mark line making sure they are cut level with the surface of the top cap.

Note: Slide the ridge top cap onto the ridge before the fitting of the hip rafter top caps. Always check the roof design to make sure the top cap can be fitted without restriction.

The radius or gable end of the ridge top cap will have been notched during manufacture. Cut off the cresting barbs so that they finish level with the notch depth. File this area flat.

Run two continuous beads of sealant over the ridge top cap were the cresting barbs were removed.

First prepare the ridge for the fitting of the ridge flashing trim (XFT). Place the flashing trim over the wall end of the ridge top cap and mark where its front edge finishes.

Fit the flashing trim and fasten using the supplied push fit rivets through a 5mm drilled hole.

Slide the ridge top cap onto the ridge.

Using a hacksaw cut back the cresting upstands up to the mark line making sure they are cut level with the surface of the top cap.

Note: Slide the ridge top cap onto the ridge before the fitting of the hip rafter top caps. Always check the roof design to make sure the top cap can be fitted without restriction.

The radius or gable end of the ridge top cap will have been notched during manufacture. Cut off the cresting barbs so that they finish level with the notch depth. File this area flat.

Run two continuous beads of sealant over the ridge top cap were the cresting barbs were removed.

First prepare the ridge for the fitting of the ridge flashing trim (XFT). Place the flashing trim over the wall end of the ridge top cap and mark where its front edge finishes.

Fit the flashing trim and fasten using the supplied push fit rivets through a 5mm drilled hole.

Slide the ridge top cap onto the ridge.

Using a hacksaw cut back the cresting upstands up to the mark line making sure they are cut level with the surface of the top cap.

Note: Slide the ridge top cap onto the ridge before the fitting of the hip rafter top caps. Always check the roof design to make sure the top cap can be fitted without restriction.

The radius or gable end of the ridge top cap will have been notched during manufacture. Cut off the cresting barbs so that they finish level with the notch depth. File this area flat.

Run two continuous beads of sealant over the ridge top cap were the cresting barbs were removed.

First prepare the ridge for the fitting of the ridge flashing trim (XFT). Place the flashing trim over the wall end of the ridge top cap and mark where its front edge finishes.

Fit the flashing trim and fasten using the supplied push fit rivets through a 5mm drilled hole.

Slide the ridge top cap onto the ridge.

Using a hacksaw cut back the cresting upstands up to the mark line making sure they are cut level with the surface of the top cap.

Note: Slide the ridge top cap onto the ridge before the fitting of the hip rafter top caps. Always check the roof design to make sure the top cap can be fitted without restriction.
Fit the ridge top cap so that the pre-notched cresting channel faces to the front and finishes 50mm back from the front of the ridge.

The last cresting length may require shortening to fit behind the finial point. Slide the cresting over the gable end cap into the cresting channel.

Remove the first section of cresting. Run two continuous lines of sealant over the full width of the ridge top cap.

Screw the finial in to gable end top cap.

Fit the gable end top cap. Drill through the two caps using a 5mm drill and fix in place with the supplied push rivets.

Note: Do not use screws to fix cap, use rivets.

The ridge top caps are joined via the plastic joiner. Centre the joiner over the joint and mark the cresting upstands each side.

Cut away the cresting upstands and file the ridge top cap smooth in this area.

Silicone seal the ridge top cap butt joint in the area below the joiner.

Place the joiner over the siliconed joint and slide the crestings back into place.

Drill 2 No. 5mm holes each side of the joiner and fit the rivets supplied.

Repeat the process for the other edge on the joint.
Position the top of the gutter bracket (XGC5) in to the eaves beam monkey tail. Rotate the bracket downwards until the bottom of the bracket clips in to the eaves beam clip. A Nylon or rubber mallet can be used to locate the clips if required.

Pull up and clip the front of the gutter bracket in to the main gutter monkey tail.

Next fit the gutter corner unions, this is made easier by lifting up the front of main gutter.

The gutter under trim is sent oversize. Measure and cut the trim so that it fits between the gutter unions, stop ends or both.

An injection moulded trim will be supplied to fit under the angled gutter unions. These have been designed for 90° and 135° gutter unions.

These are installed by pushing them up in to place under the gutter union.

Note:
Ensure all gutter union gaskets are fully inserted into the fitting prior to fitting the gutter.
Use a silicone lubricant on the gaskets to ensure correct fitting and ease of installation.
Remove the screw lug off the end of any gutter union that fits on to a box gutter adaptor. On straight unions the support webs will also need to be removed on the back and bottom sides. Slide the union over the adapter making sure the union gasket remains in situ.

The box gutter end cap can now be installed. On some roof designs this may need trimming to suit. The end cap is then fitted by pushing it in to the end of the box gutter. Finish off by fitting the main gutter and under gutter trims.

Slide the next section of eaves clad in to the eaves clad joint and knock the eaves clad in to position as before. Carry on with this procedure until all of the eaves clads are fitted.

Eaves Beam: Seal all of the internal corner joints. Place an internal eaves clad joint on to the end of an internal eaves clad. Position the clad over the eaves beam so that it's clips line up with the eaves cladding barbs. Knock the cladding on using a rubber mallet.

11.1 Internal eaves cladding
11.2 Internal ridge cladding

Ridges: Prior to fitting check the length of the ridge under clad by measuring the distance of the ridge up to the radius end bottom cap, which can be fitted first. Place the ridge under cladding on to the bottom of the ridge and clip it in to position using a rubber or nylon hammer.

The radius end bottom cap is either fitted by clipping it on to the radius end or using a nut and bolt. This will depend on the type of radius end used. When the large radius bottom cap is supplied it is fixed with a nut and bolt.

The quarter radius end bottom cap is fitted with a nut and bolt. Fit this prior to fitting the ridge under clads.

Typical detail showing the intersection of multiple ridges. These under clads will be cut to suit during manufacture.

11.3 Internal valley cladding

Valley: Fit the internal eaves beam clads and eaves clad joint.

Fit the ridge bottom caps. Each internal valley wing clad will be cut oversize and will require trimming. Fit the top of the clad up to the ridge bottom caps.

Trim the bottom of the valley clad so it fits up to the internal eaves beam clads. Attach the valley clad in the same manner as the internal eaves clads.

Repeat the process to fit the second valley bottom clad.

Picture showing how a valley finishes against an in-line gable frame. The valley wing clad, which fits against the gable will need to be trimmed to suit.
11.4 Box gutter cladding

Box Gutter: Position then knock the box gutter under clad in to position using a rubber mallet.

Raised Leg Box Gutter: Fit all of the internal side clads as standard. A flexible corner fillet is supplied to cover the corner of the raised leg section this is fixed with double sided tape (not supplied).

Extra box gutter under clad is supplied to cloak of the remaining raised leg section.

How the box gutter should look once it is fully cladded.

Measure and cut each individual section out of the extra under clad. This will clip down in to the already fitted side clad. The top will need to be fixed to the raised leg section with double sided tape or gunnable glue (not supplied).

11.5 Internal wallplate cladding

Wallplate Bottom Cap: Position the bottom cap making sure the bottom clip fits over the wallplates bottom barb. Using a rubber mallet knock the front bottom cap clip on to the wallplate in a continuous run from one end.

The internal half radius end cover is connected using the nut, bolt and bolt cap provided.

The internal half radius end cover should be scribed to fit around the wallplate.
Very long transom and hip rafters will require additional reinforcement in the form of an aluminium section bolted to the underside of the bar. The bolster should arrive pre-fitted to the rafter.

The bolster cladding XBOLC1AL (foiled or painted aluminium) finishes flush with the bolster bar at both ends. Attach the cladding to the bolster bar using a rubber mallet.

Each end of the bolster should be finished with the end cap (XBEC1) screw fixed onto the bolster bar.

The length of the bolster should be approx. 400mm shorter than the length of the glazing bar (typical 150 at ridge, 250mm at eaves) on Victorian hip and transom rafters. This can increase to 200 top and 300mm to the bottom on Georgian hips.
Useful Information

25mm rafters

<table>
<thead>
<tr>
<th>Roof pitch (degrees)</th>
<th>Rise of roof Dim. ‘X’ multiplied by:</th>
<th>Ridge height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0875</td>
<td>119</td>
</tr>
<tr>
<td>6</td>
<td>0.1051</td>
<td>118</td>
</tr>
<tr>
<td>7</td>
<td>0.1228</td>
<td>117</td>
</tr>
<tr>
<td>8</td>
<td>0.1405</td>
<td>116</td>
</tr>
<tr>
<td>9</td>
<td>0.1584</td>
<td>115</td>
</tr>
<tr>
<td>10</td>
<td>0.1763</td>
<td>114</td>
</tr>
<tr>
<td>11</td>
<td>0.1944</td>
<td>113</td>
</tr>
<tr>
<td>12</td>
<td>0.2125</td>
<td>112</td>
</tr>
<tr>
<td>13</td>
<td>0.2309</td>
<td>111</td>
</tr>
<tr>
<td>14</td>
<td>0.2493</td>
<td>110</td>
</tr>
<tr>
<td>15</td>
<td>0.2679</td>
<td>109</td>
</tr>
<tr>
<td>16</td>
<td>0.2867</td>
<td>108</td>
</tr>
<tr>
<td>17</td>
<td>0.3057</td>
<td>107</td>
</tr>
<tr>
<td>18</td>
<td>0.3249</td>
<td>106</td>
</tr>
<tr>
<td>19</td>
<td>0.3434</td>
<td>104</td>
</tr>
<tr>
<td>20</td>
<td>0.3639</td>
<td>102</td>
</tr>
</tbody>
</table>

35mm rafters

X35ER1 End rafter
X35C2S Top cap
X35C1 Bottom cap
X35C2 Side cap

X35T1 Jack rafter
X35C2S Top cap
X35C1 Bottom cap
X35C2 Side cap

X35T1 Transom rafter
X35C2S Top cap
X35C1 Bottom cap
X35C2 Side cap

X35ER3 Wall rafter
X35C2S Top cap
X35C1 Bottom cap
X35C2 Side cap

X35VH1 Victorian hip rafter
X35C2S Top cap
X35C1 Bottom cap
X35C2 Side cap

X35GH1 Georgian hip rafter
X35C2S Top cap
X35C1 Bottom cap
X35C2 Side cap

* ‘XBC1’ for Shield Roofs, ‘XBC3’ for Global Roofs

Common Road, Huthwaite, Sutton-in-Ashfield, Notts. NG17 6AD
TEL: (01623) 443200 FAX: (01623) 443305
www.synseal.co.uk
Shield & global are Synseal products